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Motivation
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Module 1 project segmentation

Precision Accuracy Recall F1-Score Time / frame

47.88% 38.25% 65.55% 55.34% 0.73 s

Per window results (669 images):
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Dataset
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Dataset used: reduced BelgiumTS Dataset1 (62 classes)

Problems found: 

- Traffic signs in (supposedly) only background images: 

- Traffic signs not labeled but correctly detected:

Assumption:
- Do Not Care Object : types of signs that we will ignore (No penalization, No gain).

1. http://btsd.ethz.ch/shareddata/

http://btsd.ethz.ch/shareddata/


Crop training dataset
BelgiumTS Dataset already cropped images:

Problem:
1. Cropped images need to have a canonical size.
2. All signs must have the same height (vertical padding).
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32

32

Resize

4 pixels

Boundary padding

Crop training dataset
Solution: make our own 32x32 crops with 4 vertical padding pixels.

Special case: sign is at image boundary → add boundary padding

Original bounding box

Expand BB

Results:



Bootstrap
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Initial Detector

Round 

sign?

Triangular 

sign?

Background Images New background 
dataset

Square 

sign?

= False Positive

Train a new model 

adding False 

Positives

Hard negatives
Total

Initial 9863

Hard 
Negatives

11647

Total 21510



Segmentation
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Original Image Segmentation using 
YCbCr color space

Morphology

Advantages

Possible sign

Speed up SW

Reduces False Positives



Segmentation
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However...

...we miss some signs! 



Sliding window
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Gaussian pyramidInput image

For each level of GP:

Segmentation Integral Image

Possible sign region

Sliding window of the 

image and the integral 

image
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Data augmentation
Idea: Generate more positive samples for each class.

● Flip samples:
○ Add more positive samples:

○ Flip not desired in some cases:

● Blur samples:
○ Smooth sudden changes. Gives the shape.

Original (3,3) (5,5) (7,7) (9,9)
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Dataset division for detection
First idea: Background vs Signs

Problem: Very different kinds of signs. Separation is not easy.

Solution: Divide signs according to its shape:

Up-triangle Down-triangle DiamondHorizontal 
rectangle

Vertical 
rectangle

Parking Round Stop

No-flipNo-flip No-flip



Detection
Simples binaries

classifiers

vs BKGD

vs BKGD

vs BKGD

vs BKGD

vs BKGD

Window Candidate

… > th△
OR

… > th◯
OR

… > th▽
OR

… > thロ
OR

… > th♢
OR

… > th 

Customized thresholds

It is a traffic sign?

vs BKGD

YES

NO

Feature
Extraction
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Non maximum suppression
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Multiple detection: 

Combine detections: Overlap > threshold → Keep the best score.

- Pascal Vallotton (Pascal)

- Pedro Felzenwalb (Pedro)

- Technische Universität Darmstadt (TUD)

● Red: Ground
truth

● Green: Detections

score(A)<score(B)



Recognition
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Detections boxes
Feature

Extraction
14 Classes

Multiclass:

+ Background (refinement step)

It is a traffic sign?

Class

Delete from 

detections

Yes

No



Evaluation
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○ Train and test: cropped 
images

○ Signs are centered
○ Same scale

Train Set

Per Window Per Image

Train Model

○ Test: Sliding window
○ Translation
○ Different scale
○ Multiple detections



Evaluation - Detection
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Per window results:

CLASSIFIER SOLVER
FEATURE

DESCRIPTOR

DIMENSION

REDUCTION

DATA

NORMALIZATION
F1-SCORE

SVM

Linear

HOG (4x4 pxc) No Yes 98.63%

HOG (8x8 pxc) No Yes 97.95%

HOG (8x8 pxc) Yes (PCA) Yes 97.30%

HOG+ColorHist Yes (PCA) Yes 97.26%

RBF

HOG (8x8 pxc) No Yes 97.66%

HOG+LBP No Yes 97.31%

HOG Color 
Multichannel

No Yes 96.98%

LDA SVD LBP No Yes 96.26%

Faster!

Slower
Color is not 
important



CLASSIFIER SOLVER
FEATURE

DESCRIPTOR

DIMENSION

REDUCTION

SEGMENTATIO

N

BLUR
IMAGES

F1-SCORE

SVM Linear HOG

Yes (LDA) Yes Yes 55.17%

Yes (LDA) Yes No 44.89%

Yes (LDA) No No 24.86%

No No No 21.49%

CASCADE

BOOSTED

CLASSIFIE

RS

-
Haar + 

Adaboost
No No No 27.61%

Evaluation - Detection
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Per image results:

LDA and segmentation improve 
results and speed

Blurring the images is key



Evaluation - Recognition
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MODEL
SOLVE

R

FEATURE

DESCRIPTO

R

DIMENSIO

N

REDUCTIO

N

F1-SCORE

(PER

WINDOW)

F1-SCORE

(PER IMAGE)

ECOC + 

SVM (ONE

VS REST)

Linear HOG Yes (LDA) 82.50% 64.68%

NEURAL

NETWORK
- HOG No - 75.68%

SVM → 

F1-Score Precision Recall

Mean 56.22% 52.52% 76.15%

Weighted 75.68% 81.05% 73.02%

NN → 



Evaluation - Whole Pipeline
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Detection Recognition
Detection 

(improved)



Video
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= Ground truth

= Estimated sign

Note: this video shows the final 
output of the recognition given 
the detection, not the detection 
by itself.

= Do not care object

http://youtube.com/v/by4uJBDNUlQ


Conclusions
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● Color segmentation and parallelization saved us time.

LDA improves performance (both speed and results).

● Tricks learned:
Correctly cropping the dataset

○ Bootstrap
○ Data augmentation

● Low results. M1 M3

F1-Score 55.34% 55.17%
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