

M3 - Machine Learning for Computer Vision

Traffic Sign Detection and Recognition

Adrià Ciurana

Guim Perarnau

Pau Riba

Index

Introduction

Motivation

Module 1 project segmentation

Per window results (669 images):

Precision	Accuracy	Recall	F1-Score	Time / frame
47.88%	38.25%	65.55%	55.34%	0.73 s

Dataset

Dataset used: reduced *BelgiumTS Dataset*¹ (62 classes)

Problems found:

- Traffic signs in (supposedly) only background images:
- Traffic signs not labeled but correctly detected:

Assumption:

- Do Not Care Object : types of signs that we will ignore (**No** penalization, **No** gain).

Crop training dataset

BelgiumTS Dataset already cropped images:

Problem:

- 1. Cropped images need to have a canonical size.
- 2. All signs must have the same height (vertical padding).

Crop training dataset

Solution: make our own 32x32 crops with 4 vertical padding pixels.

Special case: sign is at image boundary \rightarrow add boundary padding

Segmentation

Segmentation

However...

...we miss some signs!

Sliding window

Data augmentation

Idea: Generate more positive samples for each class.

- Flip samples:
 - Add more positive samples:
 - Flip not desired in some cases:

- Blur samples:
 - Smooth sudden changes. Gives the shape.

Dataset division for detection

First idea: Background vs Signs

Problem: Very different kinds of signs. Separation is not easy. **Solution:** Divide signs according to its shape:

Detection

Non maximum suppression

Multiple detection:

- Red: Ground truth
 - **Green**: Detections

Combine detections: Overlap > threshold \rightarrow Keep the best score.

Pascal Vallotton (Pascal)

$$\operatorname{verlap} = \frac{\operatorname{area}(\operatorname{intersection}(A, B))}{\operatorname{area}(\operatorname{union}(A, B))}$$

$$overlap = \frac{area(intersection(A, B))}{area(union(A, B))}$$

$$\operatorname{area}(\operatorname{union}(A, A))$$

score(A)<score(B)</pre>

Pedro Felzenwalb (Pedro) overlap =
$$\frac{\operatorname{area}(\operatorname{intersection}(A, B))}{\operatorname{area}(A)}$$

 $\operatorname{area}(\operatorname{intersection}(A, B))$ Technische Universität Darmstadt (TUD) overlap =- $\min(\operatorname{area}(A), \operatorname{area}(B))$

+ Background (refinement step)

Evaluation

Ο

Ο

0

- Test: Sliding window
- Translation
- Different scale
- Multiple detections

Evaluation - Detection

Per window results:

	CLASSIFIER	Solver	F EATURE DESCRIPTOR	DIMENSION REDUCTION	DATA NORMALIZATION	F1-Score
Color is not important	SVM	Faster! Linear Slower RBF	HOG (4x4 pxc)	No	Yes	98.63%
			HOG (8x8 pxc)	No	Yes	97.95%
			HOG (8x8 pxc)	Yes (PCA)	Yes	97.30%
			HOG+ColorHist	Yes (PCA)	Yes	97.26%
			HOG (8x8 pxc)	No	Yes	97.66%
			HOG+LBP	No	Yes	97.31%
			HOG Color Multichannel	No	Yes	96.98%
	🚺 LDA	SVD	LBP	No	Yes	96.26%

Evaluation - Detection

Per image results:

Blurring the images is key

LDA and segmentation improve results and speed

UAB • U0C ⅢUPC upf. 🐼 Master in Computer Vision Barcelona

Evaluation - Recognition

Predicted lahel

Evaluation - Whole Pipeline

Video

Note: this video shows the final output of the recognition given the detection, not the detection by itself.

Conclusions

Color segmentation and parallelization saved us time.

S LDA improves performance (both speed and results).

- Tricks learned:
 - Correctly cropping the dataset
 - Bootstrap
 - Data augmentation

Low results.

	M1	М3	
F1-Score	55.34%	55.17%	

• 30

